Novel strategy for subretinal delivery in Xenopus
نویسندگان
چکیده
PURPOSE The subretinal space, which borders the retinal pigment epithelium (RPE), photoreceptors, and Müller cells, is an ideal location to deliver genetic vectors, morpholino oligos, and nanopharmaceuticals. Unfortunately, materials injected into the space tend to stay localized, and degenerative changes secondary to retinal detachment limit its usefulness. Furthermore, such injection requires penetration of the sclera, RPE/choroid, or the retina itself. Here, we developed a strategy in Xenopus to utilize the continuity of the brain ventricle and optic vesicle lumen during embryogenesis as a means to access the subretinal space. METHODS Wild-type and transgenic embryos expressing green fluorescent protein under the rod-opsin promoter were used for optic vesicle and brain ventricle injections. For injection directly into the optic vesicle, embryos were laid on one side in clay troughs. For brain ventricle injections, embryos were placed standing in foxholes cored from agarose dishes. Linear arrays with each embryo positioned dorsal side toward the micromanipulator facilitated high throughput injections. Twenty-five micrometer micropipettes, which were positioned with a micromanipulator or by hand, were used to pressure inject ~1.0 nl of test solution (brilliant blue, India ink, fluorescein isothiocyanate dextran, or 0.04 µm of latex polystyrene microspheres [FluoSpheres®]). FluroSpheres® were particularly useful in confirming successful injections in living embryos. Anesthetized embryos and tadpoles were fixed in 4% paraformaldehyde and cryoprotected for frozen sections, or dehydrated in ethanol and embedded in methacrylate resin compatible with the microspheres. RESULTS Direct optic vesicle injections resulted in filling of the brain ventricle, contralateral optic vesicle, and central canal. Stages 24 and 25 gave the most consistent results. However, even with experience, the success rate was only ~25%. Targeting the vesicle was even more difficult beyond stage 26 due to the flattening of the lumen. In contrast, brain ventricle injections were easier to perform and had a ~90% success rate. The most consistent results were obtained in targeting the diencephalic ventricle, which is located along the midline, and protrudes anteriorly just under the frontal ectoderm and prosencephalon. An anterior midline approach conveniently accessed the ventricle without disturbing the optic vesicles. Beyond stage 30, optic vesicle filling did not occur, presumably due to closure of the connection between the ventricular system and the optic vesicles. Securing the embryos in an upright position in the agarose foxholes allowed convenient access to the frontal cephalic region. On methacrylate sections, the RPE-neural retina interphase was intact and labeled with the microspheres. As development continued, no distortion or malformation of the orbital structures was detected. In green fluorescent protein (GFP), transgenic embryos allowed to develop to stage 41, retinal FluoSpheres® labeling and photoreceptor GFP expression could be observed through the pupil. On cryosections, it was found that the FluoSpheres® extended from the diencephalon along the embryonic optic nerve to the ventral subretinal area. GFP expression was restricted to rod photoreceptors. The microspheres were restricted to the subretinal region, except focally at the lip of the optic cup, where they were present within the retina; this was presumably due to incomplete formation of the peripheral zonulae adherens. Embryos showed normal anatomic relationships, and formation of eye and lens appeared to take place normally with lamination of the retina into its ganglion cell and the inner and outer nuclear layers. CONCLUSIONS Diencephalic ventricular injection before stage 31 provides an efficient strategy to introduce molecules into the embryonic Xenopus subretinal space with minimal to the developing eye or retina.
منابع مشابه
Subretinal Injection: A Review on the Novel Route of Therapeutic Delivery for Vitreoretinal Diseases.
Compared to intravitreal injection, subretinal injection has more direct effects on the targeting cells in the subretinal space, which provides a new therapeutic method for vitreoretinal diseases, especially when gene therapy and/or cell therapy is involved. To date, subretinal delivery has been widely applied by scientists and clinicians as a more precise and efficient route of ocular drug del...
متن کاملSubretinal Perfluorocarbon Liquid (PFCL) after Vitrectomy; A Case Report And Review of Literature
Purpose: To report a case of retained subretinal perfluorocarbon liquid (PFCL) after vitrectomy and to discuss the diagnosis and management of subretinal PFCL based on literature review. Case Report: A 57-year-old female patient underwent 3-port 23-gauge vitrectomy for advanced proliferative diabetic retinopathy and combined tractional and rhegmatogenous retinal detachment. During the surgery, ...
متن کاملA new Bi-objective model for a Two-echelon Capacitated Vehicle Routing Problem for Perishable Products with the Environmental Factor
In multi-echelon distribution strategy freight is delivered to customers via intermediate depots. Rather than using direct shipments, this strategy is an increasingly popular one in urban logistics. This is primarily to alleviate the environmental (e.g., energy usage and congestion) and social (e.g., traffic-related air pollution, accidents and noise) consequences of logistics operations. This ...
متن کاملPreparation and Characterization of PCL-PEG-PCL Copolymeric Nanoparticles as Polymersomes for Delivery Hydrophilic Drugs
Background: A novel drug delivery system using poly (ε-caprolactone) - poly (ethylene glycol) -poly (ε-caprolactone) (PCL-PEG-PCL) was established in this study. Methods: Ceftriaxone (CTX) was encapsulated within PCL-PEG-PCL nanoparticles by a double emulsion technique (w/o/w), leading to creation of ceftriaxone-loaded PCL-PEG-PCL (CTX/PCL-PEG-PCL) polymersomes. The resulting polymersomes...
متن کاملTruncated Hepatitis B virus like nanoparticles: A novel drug delivery platform for cancer therapy
Nowadays, Nano-sized drug delivery systems have been studied extensively for theirpotential in cancer therapy. Various drug nanocarriers are being developed including liposomes, micelles, and Virus like nanoparticles (VLNPs). VLNPs offer many advantages for developing smart drug delivery systems due to their precise and repeated structures and relatively large cargo capacities. Truncated ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 17 شماره
صفحات -
تاریخ انتشار 2011